Abstract
A multivariable control strategy based on model predictive control techniques for the control of variable speed variable pitch wind turbines is proposed. The proposed control strategy is described for the whole operating region of the wind turbine (both partial and full load regimes). Pitch angle and generator torque are controlled simultaneously to maximize energy capture, mitigate drive train transient loads and smooth the power generated while reducing the pitch actuator activity. This has the effect of improving the efficiency and the power quality of the electrical power generated, and of increasing the life time of the system's mechanical parts. Furthermore, safe and acceptable operation of the system is guaranteed by incorporating most of the constraints on the physical variables of the WECS in the controller design. In order to cope with nonlinearities in the WECS and continuous variations in the operating point, a multiple model predictive controller is suggested which provides near optimal performance throughout the whole operating region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.