Abstract
Generally, the distributed drive electric vehicle (DDEV) works under different fault status, and this may lead to unstable operating performance. However, the conventional fault-tolerant controller is only suitable for one special fault status, and thus, the stability of DDEV is hard to be guaranteed efficiently. To deal with this problem, a novel multiple model-based fault-tolerant control system (MMFTCS) is proposed in this paper. The MMFTCS integrates an operating status recognizer and a fault-tolerant controller set. The operating status recognizer is designed to distinguish current operating status, where the matching degree between current operating status and typical operating mode set is detected using fuzzy logic. The fault-tolerant controller set is designed to achieve optimal fault-tolerant control, and each fault-tolerant controller is designed for the corresponding typical operating mode by the model predictive controller. The output of the MMFTCS is computed by the weighted signal of each fault-tolerant controller to realize smooth switching. The simulation is carried on the MATLAB environment, and the results show that the MMFTCS has excellent fault-tolerant performance under various operating status.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.