Abstract

ABSTRACTIn this study, the problem of event-triggered-based adaptive control (ETAC) for a class of discrete-time nonlinear systems with unknown parameters and nonlinear uncertainties is considered. Both neural network (NN) based and linear identifiers are used to approximate the unknown system dynamics. The feedback output signals are transmitted, and the parameters and the NN weights of the identifiers are tuned in an aperiodic manner at the event sample instants. A switching mechanism is provided to evaluate the approximate performance of each identifier and decide which estimated output is utilised for the event-triggered controller design, during any two events. The linear identifier with an auxiliary output and an improved adaptive law is introduced so that the nonlinear uncertainties are no longer assumed to be Lipschitz. The number of transmission times are significantly reduced by incorporating multiple model schemes into ETAC. The boundedness of both the parameters of identifiers and the system outputs is demonstrated though the Lyapunov approach. Simulation results demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call