Abstract

This article proposes new theoretical results on the multiple Mittag-Leffler stability of almost periodic solutions (APOs) for fractional-order delayed neural networks (FDNNs) with nonlinear and nonmonotonic activation functions. Profited from the superior geometrical construction of activation function, the considered FDNNs have multiple APOs with local Mittag-Leffler stability under given algebraic inequality conditions. To solve the algebraic inequality conditions, especially in high-dimensional cases, a distributed optimization (DOP) model and a corresponding neurodynamic solving approach are employed. The conclusions in this article generalize the multiple stability of integer-or fractional-order NNs. Besides, the consideration of the DOP approach can ameliorate the excessive consumption of computational resources when utilizing the LMI toolbox to deal with high-dimensional complex NNs. Finally, a simulation example is presented to confirm the accuracy of the theoretical conclusions obtained, and an experimental example of associative memories is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.