Abstract

Waelz slag, which is a Fe-bearing hazardous waste, was applied as the raw material in the synthesis of M-Fe3O4@Fe2O3 (M = Al, Zn, Cu, and Mn) nanoparticles, which are potential photocatalysts. Through acidolysis, 97.23% of Fe and most of the valuable metals were extracted from this slag. Using sol-gel processes, designed Fe3O4@Fe2O3 nanoparticles doped with multiple elements were systematically synthesised and characterised using X-ray diffraction, field emission scanning electron microscopy, electron diffraction spectroscopy, transmission electron microscopy, and Brunauer–Emmett–Teller analysis. The photocatalytic activities of the synthesised particles and undoped Fe2O3 nanoparticles were compared through photocatalytic methyl orange degradation experiments under UV and simulated solar light. The results indicated that all of the slag-derived nanoparticles gave improved photocatalytic performances compared to the undoped sample, and the M-Fe3O4@Fe2O3 (M = Al, Zn, and Cu) sample exhibited the best photocatalytic activity. The enhancement can be attributed to grain refinement, doping, and the formation of a typical Fe3O4@Fe2O3 core-shell structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.