Abstract
AbstractThe multiple melting behavior of poly(butylene succinate) (PBSu) was studied with differential scanning calorimetry (DSC). Three different PBSu resins, with molecular weights of 1.1 × 105, 1.8 × 105, and 2.5 × 105, were cooled from the melt (150 °C) at various cooling rates (CRs) ranging from 0.2 to 50 K min−1. The peak crystallization temperature (Tc) of the DSC curve in the cooling process decreased almost linearly with the logarithm of the CR. DSC melting curves for the melt‐crystallized samples were obtained at 10 K min−1. Double endothermic peaks, a high‐temperature peak H and a low‐temperature peak L, and an exothermic peak located between them appeared. Peak L decreased with increasing CR, whereas peak H increased. An endothermic shoulder peak appeared at the lower temperature of peak H. The CR dependence of the peak melting temperatures [Tm(L) and Tm(H)], recrystallization temperature (Tre), and heat of fusion (ΔH) was obtained. Their fitting curves were obtained as functions of log(CR). Tm(L), Tre, and ΔH decreased almost linearly with log(CR), whereas Tm(H) was almost constant. Peak H decreased with the molecular weight, whereas peak L increased. It was suggested that the rate of the recrystallization decreased with the molecular weight. Tm(L), Tm(H), Tre, and Tc for the lowest molecular weight sample were lower than those for the others. In contrast, ΔH for the highest molecular weight sample was lower than that for the others. If the molecular weight dependence of the melting temperature for PBSu is similar to that for polyethylene, the results for the molecular weight dependence of PBSu can be explained. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2411–2420, 2002
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.