Abstract

ABSTRACTMethanotrophs require copper for their activity as it plays a critical role in the oxidation of methane to methanol. To sequester copper, some methanotrophs secrete a copper-binding compound termed methanobactin (MB). MB, after binding copper, is reinternalized via a specific outer membrane TonB-dependent transporter (TBDT). Methylosinus trichosporium OB3b has two such TBDTs (MbnT1 and MbnT2) that enable M. trichosporium OB3b to take up not only its own MB (MB-OB3b) but also heterologous MB produced from other methanotrophs, e.g., MB of Methylocystis sp. strain SB2 (MB-SB2). Here, we show that uptake of copper in the presence of heterologous MB-SB2 can either be achieved by initiating transcription of mbnT2 or by using its own MB-OB3b to extract copper from MB-SB2. Transcription of mbnT2 is mediated by the N-terminal signaling domain of MbnT2 together with an extracytoplasmic function sigma factor and an anti-sigma factor encoded by mbnI2 and mbnR2, respectively. Deletion of mbnI2R2 or excision of the N-terminal region of MbnT2 abolished induction of mbnT2. However, copper uptake from MB-SB2 was still observed in M. trichosporium OB3b mutants that were defective in MbnT2 induction/function, suggesting another mechanism for uptake copper-loaded MB-SB2. Additional deletion of MB-OB3b synthesis genes in the M. trichosporium OB3b mutants defective in MbnT2 induction/function disrupted their ability to take up copper in the presence of MB-SB2, indicating a role of MB-OB3b in copper extraction from MB-SB2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call