Abstract

An experimental study of multiple matrix cracking in a fiber-reinforced titanium alloy has been conducted. The focus has been on the effects of stress amplitude on the saturation crack density and the effects of crack density on hysteresis behavior. Comparisons have been made with predictions based on unit cell models, assuming the sliding resistance of the interface to be characterized by a constant interfacial shear stress. In addition, independent measurements of the sliding stress have been made using fiber pushout tests on both pristine and fatigued specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.