Abstract

Several manifold learning techniques have been developed to learn, given a data, a single lower dimensional manifold providing a compact representation of the original data. However, for complex data sets containing multiple manifolds of possibly of different dimensionalities, it is unlikely that the existing manifold learning approaches can discover all the interesting lower-dimensional structures. We therefore introduce a hierarchical manifolds learning framework to discover a variety of the underlying low dimensional structures. The framework is based on hierarchical mixture latent variable model, in which each submodel is a latent variable model capturing a single manifold. We propose a novel multiple manifold approximation strategy used for the initialization of our hierarchical model. The technique is first verified on artificial data with mixed 1 i¾?, 2 i¾? and 3 i¾?dimensional structures. It is then used to automatically detect lower-dimensional structures in disrupted satellite galaxies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.