Abstract

Magnetic topological materials have drawn markedly attention recently due to the strong coupling of their novel topological properties and magnetic configurations. In particular, the MnBi2Te4/(Bi2Te3)n family highlights the researches of multiple magnetic topological materials. Via first-principles calculations, we predict that Mn(Bi, Sb)4Se7, the close relatives of MnBi2Te4/(Bi2Te3)n family, are topological nontrivival in both antiferromagnetic and ferromagnetic configurations. In the antiferromagnetic ground state, Mn(Bi, Sb)4Se7 are simultaneously topological insulators and axion insulators. Massless Dirac surface states emerge on the surfaces parallel to the z axis. In ferromagnetic phases, they are axion insulators. Particularly, when the magnetization direction is along the x axis, they are also topological crystalline insulators. Mirror-symmetry-protected gapless surface states exist on the mirror-invariant surfaces. Hence, the behaviors of surface states are strongly dependent on the magnetization directions and surface orientations. Our work provides more opportunities for the study of magnetic topological physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.