Abstract

Obstructive sleep apnea (OSA) is a worldwide health issue that affects more than 400 million people. Given the limitations inherent in the current conventional diagnosis of OSA based on symptoms report, novel diagnostic approaches are required to complement existing techniques. Recent advances in gene sequencing technology have made it possible to identify a greater number of genes linked to OSA. We identified key genes in OSA and CPAP treatment by screening differentially expressed genes (DEGs) using the Gene Expression Omnibus (GEO) database and employing machine learning algorithms. None of these genes had previously been implicated in OSA. Moreover, a new diagnostic model of OSA was developed, and its diagnostic accuracy was verified in independent datasets. By performing Single Sample Gene Set Enrichment Analysis (ssGSEA) and Counting Relative Subsets of RNA Transcripts (CIBERSORT), we identified possible immunologic mechanisms, which led us to conclude that patients with high OSA risk tend to have elevated inflammation levels that can be brought down by CPAP treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call