Abstract
As an essential environmental property, the aqueous solubility quantifies the hydrophobicity of a compound. It could be further utilized to evaluate the ecological risk and toxicity of organic pollutants. Concerned about the proliferation of organic contaminants in water and the associated technical burden, researchers have developed QSPR models to predict aqueous solubility. However, there are no standard procedures or best practices on how to comprehensively evaluate models. Hence, the CRITIC-TOPSIS comprehensive assessment method was first-ever proposed according to a variety of statistical parameters in the environmental model research field. 39 models based on 13 ML algorithms (belonged to 4 tribes) and 3 descriptor screening methods, were developed to calculate aqueous solubility values (log Kws) for organic chemicals reliably and verify the effectiveness of the comprehensive assessment method. The evaluations were carried out for exhibiting better predictive accuracy and external competitiveness of the MLR-1, XGB-1, DNN-1, and kNN-1 models in contrast to other prediction models in each tribe. Further, XGB model based on SRM (XGB-1, C = 0.599) was selected as an optimal pathway for prediction of aqueous solubility. We hope that the proposed comprehensive evaluation approach could act as a promising tool for selecting the optimum environmental property prediction methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.