Abstract

This is a preliminary case–control study on osteopenic/osteoporotic elderly women, testing the association of proximal femur fracture with minimum femoral strength, as derived from finite element (FE) analysis in multiple loading conditions.Fracture cases (n=22) in acute conditions were enrolled among low-trauma fractures admitted in various hospitals in the Emilia Romagna Region, Italy. Women with no history of low-trauma fractures were enrolled as controls (n=33). Patients were imaged with DXA to obtain aBMD, and with a bilateral full femur CT scan. FE-strength was derived in stance and fall configurations: (i) as the minimum strength among those obtained for multiple loading conditions spanning a domain of plausible force directions, and (ii) as the strength associated to the most commonly used single loading conditions. The association of FE-strength and aBMD with fractures was tested with logistic regression models, deriving odds ratios (ORs) and area under the receiver operating characteristic curve (AUC).FE-strength from multiple loading conditions better classified fracture cases from controls (OR per SD change=9.6, 95% CI=3.0–31.3, AUC=0.87 in stance; OR=9.5, 95% CI=2.9–31.2, AUC=0.88 in fall) compared to aBMD (OR=3.6, 95% CI=1.6–8.2, AUC=0.79 for total femur aBMD), while FE-strength results from the most commonly used single loading conditions were similar to aBMD. Only FE-strength from multiple loading conditions remained significant in age- and aBMD-adjusted models (OR=10.5, 95% CI=1.8–61.3, AUC=0.95).In summary, we highlighted the importance of considering different loading conditions to identify bone weakness, and confirmed that femoral FE-strength estimates may add value to aBMD predictions in elderly osteopenic/osteoporotic women.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call