Abstract
AbstractThe critical micelle concentration (CMC) of a set of 30 alkyltrimethylammonium [RN+(R′)3X−] and alkylpyridinium salts [RN+ΦX−] was related to topological, electronic, and molecular structure parameters using a stepwise regression method. Among different models obtained, two equations were selected as the best and their specifications are given. The statistics for these models together with the crossvalidation results indicate the capability of both models to predict the CMC of cationic surfactants. The results obtained for alkyltrimethylammonium salts indicate that geometric characteristics such as volume of the tail of the molecule, maximum distance between the atoms, and surface area play a major role in micelle formation. However, the simultaneous modeling of the CMC of both alkyltrimethylammonium and alkylpyridinium salts indicates that the topological descriptors of the Balaban and Randic indices and also the electronic parameter of total energy of the molecules are important.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.