Abstract
Multiple regression models are very relevant to predict values using predictor variables. The objective of this study was to predict the global solar radiation in the year 2019 in the area of East Lima, Peru. Three continuous quantitative predictor variables were analyzed: temperature, humidity, wind speed and the response variable was global solar radiation, resulting in a model with excellent significance p<0.001 that shows the prediction is effective. The multiple linear regression method was used, finding an average global radiation of 175 W/m2 and predictor variables with average temperature of 19.2 °C, humidity 23.9% and wind speed 1.77 m/s, with the highest temperature in summer recorded at 24.6°C, the highest humidity of 51.2% in autumn, the highest wind speed in summer at 2.63 m/s and the highest maximum global solar radiation in spring with 183 W/m2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.