Abstract

Water resources are among the fundamental resources that are the most threatened worldwide by various pressures. This study applied the Driver–Pressure–State–Impact–Response (DPSIR) framework as an innovative tool to better understand the dynamic interlinkages between the different sources of multiple stressors on aquatic ecosystems in Burkina Faso. The triangulation of evidences from interviews, literature reviews, and strategic simulations shows that several human impacts as well as climate change and its effects (such as the decrease of the water level, and the increase of the surface water temperature) are detrimental to fish productivity, abundance, and average size. Furthermore, the ongoing demographic and nutritional transition is driving cumulative pressures on water and fish resources. In this context, the development of aquaculture could offer alternative livelihoods and help fish stocks in natural ecosystems to recover, thereby reducing fishermen’s vulnerability and easing overfishing pressures. Further, the empowerment of the actors and their participation to reinforce fisheries regulation are required to escape the current “regeneration trap” and to achieve a sustainable management of aquatic ecosystems in Burkina Faso.

Highlights

  • Introduction0.01%, of the world’s water and about 0.8% of Earth’s surface, fresh water supports 6% of all species (100,000 out of 1.8 million) described for aquatic or terrestrial ecosystems [1]

  • A tiny fraction, 0.01%, of the world’s water and about 0.8% of Earth’s surface, fresh water supports 6% of all species (100,000 out of 1.8 million) described for aquatic or terrestrial ecosystems [1].This makes both inland water and its biodiversity an essential resource [1,2] for the economy, landscape, science, and education [1]

  • In this sub-section, we present the main drivers, pressures, state, impacts, and responses identified based on two evidence lines, viz. literature reviews and the interviews

Read more

Summary

Introduction

0.01%, of the world’s water and about 0.8% of Earth’s surface, fresh water supports 6% of all species (100,000 out of 1.8 million) described for aquatic or terrestrial ecosystems [1]. This makes both inland water and its biodiversity an essential resource [1,2] for the economy, landscape, science, and education [1]. In 2016, excluding aquaculture (aqc) production, Africa’s inland capture production reached nearly 2.9 million tons, accounting for 25% of the global catches, and ranking the continent second worldwide after Asia (7.7 million tons produced) [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.