Abstract
An estimate for the minimum film thickness required to give the scattering state of a reflective display material, such as a polymer dispersed liquid crystal (PDLC) or polymer stabilized cholesteric texture (PSCT), a desired diffuse luminous reflectance is presented. It is concluded that single scattering models are not suited for this task. To account for the multiple scattering of light, a previously developed model based on Mie scattering and two-flux radiative transfer theory is implemented. This simple model relates the size, composition, and the volume fraction of the scattering entities to the diffuse reflectance of the material. It is shown that the diffuse reflectance predictions from this model are in good agreement with measurements from other turbid systems. Using assumptions intended to produce an underestimate, it is concluded that the most birefringent liquid crystal materials currently available would require a film thickness between 11.5 µm and 17 µm to give an ideal black substrate a diffuse luminous reflectance of 60%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.