Abstract
To gain a better understanding of the biological consequences of the exposure of tumor cells to selenium, we evaluated the selenium-dependent responses of two selenoproteins (glutathione peroxidase and the recently characterized 15-kDa selenoprotein) in three human glioma cell lines. Protein levels, mRNA levels, and the relative distribution of the two selenocysteine tRNA isoacceptors (designated mcm 5U and mcm 5Um) were determined for standard as well as selenium-supplemented conditions. The human malignant glioma cell lines D54, U251, and U87 were maintained in normal or selenium-supplemented (30 nM sodium selenite) conditions. Northern blot analysis demonstrated only minor increases in steady-state GSHPx-1 mRNA in response to selenium addition. Baseline glutathione peroxidase activity was 10.7 ± 0.7, 7.6 ± 0.7, and 4.3 ± 0.7 nmol NADPH oxidized/min/mg protein for D54, U251, and U87, respectively, as determined by the standard coupled spectrophotometric assay. Glutathione peroxidase activity increased in a cell line-specific manner to 19.7 ± 1.4, 15.6 ± 2.1, and 6.7 ± 0.5 nmol NADPH oxidized/min/mg protein, respectively, as did a proportional increase in cellular resistance to H 2O 2, in response to added selenium. The 15-kDa selenoprotein mRNA levels likewise remained constant despite selenium supplementation. The selenium-dependent change in distribution between the two selenocysteine tRNA isoacceptors also occurred in a cell line-specific manner. The percentage of the methylated isoacceptor, mcm 5Um, changed from 35.5 to 47.2 for D54, from 38.1 to 47.3 for U251, and from 49.0 to 47.6 for U87. These data represent the first time that selenium-dependent changes in selenoprotein mRNA and protein levels, as well as selenocysteine tRNA distribution, were examined in human glioma cell lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.