Abstract

A design method of multiple layers superconducting magnet for MRI is introduced. Considering the actual coils layout, the candidate domain is divided into several layers. The current density curves of each layer are solved by Quadratic Programming optimization with Minimum Stored Energy. The seed coils are arranged at the peak positions of current curves. Based on the regularization solution, the current of the seed coils can be solved. According to the coil's current, selecting the current density of the superconducting wires, the original sections for the coils can be obtained. Then a further optimization about the homogeneity based on constrained nonlinear multivariable optimization method is employed to determine the final coils' geometries. The method is especially suitable for short superconducting MRI magnet design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.