Abstract

In this study, we investigate the whispering gallery modes (WGMs) of a 14-layer black phosphorous (BP) phototransistor based on a silicon microdisk. The transmission characteristics of the waveguide-coupled microdisk resonator with and without BP are analyzed to determine the resonance wavelength. The effect of BP on the electric field distributions of the WGMs of the Si microdisk resonator is simulated by using the finite-element method. In addition, the enhanced optical absorption of the BP-covered Si microdisk resonator is further analyzed by the coupled mode theory. Contrastingly, the device also functions as a phototransistor with a peak responsivity of 328.1A/W and high field-effect mobility of nearly 466.6 cm2 V-1 s-1. Our proposed device paves the path for the exploitation of BP optoelectronics devices with the assistance of optical microresonators in the near-infrared range (NIR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call