Abstract

The integral energy method has been used to study the nonlinear interactions of the large-scale coherent structure in a spatially developing round jet. The streamwise development of a jet is obtained in terms of the mean flow shear-layer momentum thickness, the wave-mode kinetic energy and the wave-mode phase angle. With the energy method, a system of partial differential equations is reduced to a system of ordinary differential equations. The nonlinear differential equations are solved with initial conditions which are given at the nozzle exit. It is shown that the initial wave-mode energy densities as well as the initial phase angles play a significant role in the streamwise evolution of the large-scale coherent wave modes and the mean flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.