Abstract
A shape recognition approach is presented. Uncertainty handling, combining, and propagation form the heart of the method. Multiple knowledge sources extract information from the segmented image and increase knowledge about undefined shapes. Knowledge sources have to be tuned to discriminate shape classes, and a critical number of independent knowledge sources guarantees the classification. Information provided by the knowledge sources is stored in the Shafer form of probability mass assignment. Dempster's rule is used to update belief in classes. A brief theoretical overview is given. Combined with a heuristic, this method achieves interesting results as well as a short execution time. An example derived from an application in the PROMETHEUS project, consisting of traffic sign recognition on a motorway, illustrates this method.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.