Abstract

The fluid mechanics and heat transfer characteristics of film cooling are three-dimensional and highly complex. To understand this problem better, an experimental study was conducted in a low-speed wind tunnel on a row of six rectangular jets injected at 90 deg to the crossflow (mainstream flow). The jet-to-crossflow velocity ratios (blowing ratios) examined were 0.5, 1.0, and 1.5, and the jet spacing-to-jet width ratio was 3.0. No significant temperature difference between jet and crossflow air was introduced. Mean velocities and six flow stresses were measured using a three-component laser-Doppler velocimeter operating in coincidence mode. Seeding of both jet and cross-stream air was achieved with a commercially available smoke generator. Flow statistics are reported in the form of vector plots, contours, and x-y graphs, showing velocity, turbulence intensity, and Reynolds stresses. To complement the detailed measurements, flow visualization was accomplished by transmitting the laser beam through a cylindrical lens, thereby generating a narrow, intense sheet of light. Jet air only was seeded with smoke, which was illuminated in the plane of the light sheet. Therefore, it was possible to record on video tape the trajectory and penetration of the jets in the crossflow. Selected still images from the recordings are presented. Numerical simulations of the observed flow field were made by using a multigrid, segmented, k–ε CFD code. Special near-wall treatment included a nonisotropic formulation for the effective viscosity, a low-Re model for k, and an algebraic model for the length scale. Comparisons between the measured and computed velocities show good agreement for the nonuniform mean flow at the jet exit plane. Velocities and stresses on the jet centerline downstream of the orifice are less well predicted, probably because of inadequate turbulence modeling, while values off the centerline match those of the experiments much more closely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.