Abstract
Using a three-fluid model, the combined effects of an oblique magnetic field and finite temperature of positive ion species on the characteristics of the sheath region of multi-component plasmas are investigated numerically. It is assumed that the ion species are singly charged and have different masses. In the presence of an external magnetic field, it is shown that the density distribution of positive ion species (especially the lighter ion species) begins to fluctuate and does not decrease monotonically towards the wall. Also, it is shown that by increasing the magnetic field, the amplitude of fluctuation increases and its position moves towards the sheath edge. Moreover, it is illustrated that the presence of the magnetic field affects the sheath width and by increasing the magnetic field, the sheath width decreases. In addition, the results show that in the presence of the magnetic field, the increase of temperature of positive ion species has an infinitesimal effect on the sheath width and density distribution of positive ion species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.