Abstract

Abstract Eight complex alloys based on the composition Fe13Cr15Ni2Mo2Mn0.2Ti0.8Si0.06C were implanted simultaneously with 400 keV boron and 550 keV nitrogen, and investigated for microhardness changes and bending fatigue life. The dual implantation was found to decrease the fatigue life of all eight alloys although the implantation increased near-surface hardness of all eight alloys. This result was in contrast to the significant improvements found in the fatigue life of four B, N implanted simple Fe13Cr15Ni alloys. It was determined that the implantation suppressed surface slip band formation, the usual crack initiation site, but in the complex alloys, this suppression promoted a shift to grain boundary cracking. A similar phenomenon was also observed when the simple Fe13Cr15Ni alloys were simultaneously implanted with boron, nitrogen and carbon wherein fatigue life decreased, and gain, grain boundary cracks were observed. To test the hypothesis that ion implantation made the overall surface more fatigue resistant but led to a shift to grain boundary cracking, single crystal specimens of the ternary Fe15Cr15Ni were also implanted with boron and nitrogen ions. The fatigue life decreased for the single crystal specimens also, due to concentration of applied stress along fewer slip bands as compared to the control single crystal specimens were applied stress was relieved by slip band formation over the entire gauge region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call