Abstract
As previously described, confluent AKR-2B fibroblasts rapidly disintegrate upon removal of serum. Platelet-derived growth factor isoforms AB or BB (PDGF-AB, -BB) added immediately after serum deprivation caused complete survival of the cells without initiating proliferation (Simmet al.,1994,J. Cell. Physiol.160, 295). Here the role of cAMP as a protective agent was investigated by using forskolin or 8-Br-cAMP. Both reagents afforded high cellular protection. The phorbolester TPA, an activator of protein kinase C isoforms, also exerted a high protection against cell death (ED50= 7 nM). Unexpectedly colchicine (ED50= 1.5 μM) an inhibitor of tubulin polymerization also protected cells from death. The protective effects of PDGF-BB and TPA were dependent on protein synthesis as indicated by their complete suppression by cycloheximide (CHx). Surprisingly, forskolin and 8-Br-cAMP remained effective even in the presence of CHx. Detailed studies of several signalling pathways were performed. These investigations showed no interference between PDGF-BB and cAMP-dependent pathways at the early stage of signal transduction. As previously described, the ICE-like protease inhibitor tyr-val-ala-asp-chloromethylketone (YVAD-cmk) protected cells from death (Simmet al.,1997,J. Cell Sci.110, 819–828). As shown here, a substantial protection was also achieved by the addition of two other caspase inhibitors: asp-glu-val-asp-aldehyde (DEVD-cho; ED50= 100 μM) and benzoylcarbonyl-asp-glu-val-asp-chloromethylketone (Z-DEVD-cmk; ED50= 100 μM). The activity of caspases was studied using either tyr-val-ala-asp-aminomethylcoumarine (YVAD-amc) or aspglu-val-asp-aminomethylcoumarine (DEVD-amc) as substrates. There was no activation of a YVADase, whereas as pronounced increase in DEVDase activity was found with a maximum 3 h after serum removal. Cross competition experimentsin vitroshowed that the latter activity is inhibited also by low concentrations of YVAD-cmk (300–600 nM), suggesting that both inhibitors inactivated the same target protease. Remarkably all tested protective reagents lead to an inhibition of the DEVDase activity in intact cells. Since these reagents act via distinct intracellular pathways, the existence of a regulatory element upstream of the DEVDase is proposed which integrates signals from a variety of pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.