Abstract

Micromachined shallow arch resonant beams have attracted significant attention thanks to their rich dynamical behavior, inherent nonlinearities, and the potential to excite various internal resonances. Currently, there is a lack of comprehensive experimental studies for the various types of internal resonances in arches and particularly at the micro and nano scales. Here, we aim to investigate and identify different types of internal resonances of an initially curved beam, electrothermally actuated and electrostatically driven, by electrical characterization techniques. Upon changing the electrothermal voltage of silicon micromachined arches, the second symmetric natural frequency of an arch is adjusted to near twice, three times, and four times the fundamental natural frequency, which gives rise to 2:1, 3:1, and 4:1 autoparametric resonances between the two modes. These resonances are demonstrated experimentally. We show various frequency-response curves of the total response around the excitation frequency and highlight the contribution of each mode before, during, and after the internal resonances. Allan-deviation results are also shown indicating enhanced frequency stabilization of the arch oscillation when experiencing internal resonances. These studies motivate further research in this direction to exploit internal resonances of micromachined resonators for practical applications, such as sensors and mechanical amplifier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.