Abstract

In the present study, the nonlinear response of a shallow suspended cable with multiple internal resonances to the primary resonance excitation is investigated. The method of multiple scales is applied directly to the nonlinear equations of motion and associated boundary conditions to obtain the modulation equations and approximate solutions of the cable. Frequency–response curves and force–response curves are used to study the equilibrium solution and its stability. The effects of the excitation amplitude on the frequency–response curves of the cable are also analyzed. Moreover, the chaotic dynamics of the shallow suspended cable is investigated by means of numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.