Abstract

PurposeThe purpose of this paper is to solve the problem that mobile robots are still based on reactive collision avoidance in unknown dynamic environments leading to a lack of interaction with obstacles and limiting the comprehensive performance of mobile robots. A dynamic window approach with multiple interaction strategies (DWA-MIS) is proposed to solve this problem.Design/methodology/approachThe algorithm firstly classifies the moving obstacle movement intention, based on which a rule function is designed to incorporate positive incentives to motivate the robot to make correct avoidance actions. Then, the evaluation mechanism is improved by considering the time cost and future information of the environment to increase the motion states. Finally, the optimal objective function is designed based on genetic algorithm to adapt to different environments with time-varying multiparameter optimization.FindingsFaced with obstacles in different states, the mobile robot can choose a suitable interaction strategy, which solves the limitations of the original DWA evaluation function and avoids the defects of reactive collision avoidance. Simulation results show that the algorithm can efficiently adapt to unknown dynamic environments, has less path length and iterations and has a high comprehensive performance.Originality/valueA DWA-MIS is proposed, which increases the interaction capability between mobile robots and obstacles by improving the evaluation function mechanism and broadens the navigation strategy of DWA at a lower computational cost. After real machine verification, the algorithm has a high comprehensive performance based on real environment and provides a new idea for local path planning methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call