Abstract

We describe the Multiple Instrument Distributed Aperture Sensor (MIDAS) concept, an innovative approach to future planetary science mission remote sensing that enables order of magnitude increased science return. MIDAS provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes, by integrating advanced optical interferometry technologies. All telescope optical assemblies are integrated into MIDAS as the primary remote sensing science payload, thereby reducing the cost, resources, complexity, I&T and risks of a set of back-end science instruments (SI's) tailored to a specific mission. MIDAS interfaces to multiple science instruments, enabling sequential and concurrent functional modes, thereby expanding the potential planetary science return many fold. Passive imaging modes with MIDAS enable remote sensing at diffraction-limited resolution sequentially by each science instrument, or at lower resolution by multiple science instruments acting concurrently on the image, such as in different wavebands. Our MIDAS concept inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the science instruments. For planetary science missions, the MIDAS optical design provides high-resolution imaging for long dwell times at high altitudes, thereby enabling real-time, wide-area remote sensing of dynamic surface characteristics. In its active remote sensing modes, using an integrated solid-state laser source, MIDAS enables LIDAR, vibrometry, surface illumination, and various active or ablative spectroscopies. Our concept is scalable to apertures well over 10m, achieved by autonomous deployments or manned assembly in space. MIDAS is a proven candidate for future planetary science missions, enabled by our continued investments in focused MIDAS technology development areas. In this paper we present the opto-mechanical design for a 1.5m MIDAS point design, including its accommodation of back-end science instruments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.