Abstract

The multiple-instance learning model has received much attention recently with a primary application area being that of drug activity prediction. Most prior work on multiple-instance learning has been for concept learning, yet for drug activity prediction, the label is a real-valued affinity measurement giving the binding strength. We present extensions of k-nearest neighbors (k-NN), Citation-kNN, and the diverse density algorithm for the real-valued setting and study their performance on Boolean and real-valued data. We also provide a method for generating chemically realistic artificial data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.