Abstract

We proposed a hierarchical framework including an unsupervised candidate image selection and a weakly supervised patch image detection based on multiple instance learning (MIL) to effectively estimate eosinophil quantities in tissue samples from whole slide images. MIL is an innovative approach that can help deal with the variability in cell distribution detection and enable automated eosinophil quantification from sinonasal histopathological images with a high degree of accuracy. The study lays the foundation for further research and development in the field of automated histopathological image analysis, and validation on more extensive and diverse datasets will contribute to real-world application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.