Abstract

The thermocapillary flow instabilities of silicon melt in a cylindrical pool with a rotating disk on the free surface (a simplified model of the Czochralski crystal growth) are numerically investigated by using the linear stability analysis. The complete neutral or critical stability curves are determined. Results show that the neutral stability curves form a closed region in the parameter plane, in which the steady axisymmetric flow is linearly stable. Two types of rotating wave (RW1 and RW2) instabilities and two types of hydrothermal wave (HTW1 and HTW2) instabilities are found. The energy analysis shows that all the instabilities are hydrodynamic (inertial) in nature. Specifically, RW1 and RW2 are caused by the azimuthal shear induced by the crystal rotation, while HTW1 and HTW2 are caused by the radial shear induced by the thermocapillary force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call