Abstract

BackgroundUnderstanding the dynamics of insecticide resistance in African malaria vectors is crucial for successful implementation of resistance management strategies in the continent. This study reports a high and multiple insecticide resistance in Anopheles funestus from southern Ghana which could compromise the Malaria Operational Plan in this country, if not tackled. Adult Anopheles mosquitoes were collected in Obuasi and Adawukwa, in southern Ghana. Plasmodium infection rates, susceptibility to the main insecticides used in public health and the molecular basis of insecticide resistance were established.ResultsAn. funestus (sensu stricto) (s.s.) was the predominant mosquito species found resting inside the houses in Obuasi, while at Adawukwa it was found together with An. coluzzii. Parasite rates were high in An. funestus (s.s.) populations from both localities, with Plasmodium infection rates greater than 12.5 %. Both, An. funestus (s.s.) and An. coluzzii, from the two sites exhibited high resistance to the insecticide from various classes including the pyrethroids, carbamates and DDT, but remained fully susceptible to the organophosphates. A preliminary characterization of the underlying molecular mechanisms of resistance in An. funestus (s.s.) populations from both sites revealed that CYP6P9a, CYP6P9b, CYP6M7 and GSTe2 genes are upregulated, markedly higher in Obuasi (between 3.35 and 1.83 times) than in Adawukwa population. The frequency of L119F-GSTe2 and A296S-RDL resistance markers were also higher in Obuasi (42.5 and 68.95 % higher), compared with An. funestus (s.s.) populations from Adawukwa. These findings suggest that the similar resistance pattern observed in both An. funestus (s.s.) populations are driven by different mechanisms.ConclusionsResistance to multiple insecticides in public health use is present in malaria vectors from Ghana with major resistance genes already operating in the field. This should be taken into consideration in the design of resistance management strategies to avoid operational failure.

Highlights

  • Understanding the dynamics of insecticide resistance in African malaria vectors is crucial for successful implementation of resistance management strategies in the continent

  • To assist the efforts of malaria vector control and help in developing effective resistance management plans, this study reports the contribution to malaria transmission and the insecticide resistant profile of two An. funestus (s.s.) populations collected in two districts of southern Ghana, Obuasi and Adawukwa, in 2014

  • Species identification Results from PCR-species identification performed from F0 females morphologically identified as An. funestus group in Obuasi and Adawukwa, revealed that they all belong to the major malaria vector An. funestus (s.s.)

Read more

Summary

Introduction

Understanding the dynamics of insecticide resistance in African malaria vectors is crucial for successful implementation of resistance management strategies in the continent. Malaria is endemic in Ghana with the entire population of 24.2 million at risk of infection and more than 3 million cases of clinical malaria reported annually, of which 900,000 cases are in children under the age of five [1]. To reduce this burden, the President’s Malaria Initiative (PMI), in collaboration with Ghana National Malaria Control Program and other partners, has developed the PMI/Ghana Malaria Operational Plan (MOP). Implementation of successful resistance management strategies requires up-to-date information of insecticide resistant patterns in malaria vectors, as advised by the WHO Global Plan for Insecticide Resistance Management in Malaria Vectors [6], in order to utilise appropriate insecticides, and to establish the molecular mechanisms driving the resistance

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call