Abstract

Conventional and volatile pyrethroids are widely used to control the vectors of dengue arboviral diseases, Aedes albopictus in China. The development of resistance to conventional pyrethroids has become an increasing problem, potentially affecting the use of volatile pyrethroid. The Ae. albopictus dimefluthrin-resistant (R) strain by selecting the field population with dimefluthrin were investigated the multiple and cross-resistance levels between conventional and volatile pyrethroids and analyzed both target-site and metabolic resistant mechanisms to dimefluthrin compared with three volatile pyrethroids metofluthrin, meperfluthrin and esbiothrin and type II pyrethroid deltamethrin. The R strain displayed moderate to low resistance to selected pyrethroids (dimefluthrin, metofluthrin, meperfluthrin, esbiothrin and deltamethrin) associated with metabolic enzymes, but less distinctly to selected pyrethroids (dimefluthrin and metofluthrin) associated with a high frequency of sodium channel gene mutation (F1534S). Profiles of the multiple and cross-resistance of the R strain to other three volatile pyrethroids and type II pyrethroid deltamethrin were detected. Both synergistic and enzyme activity studies indicated that multifunctional oxidase (MFO) played an important role in this resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.