Abstract

This paper deals with the imaging problem from data collected by means of a microwave photonics-based distributed radar network. The radar network is leveraged on a centralized architecture, which is composed of one central unit (CU) and two transmitting and receiving dual-band remote radar peripherals (RPs), it is capable of collecting monostatic and multistatic phase-coherent data. The imaging is herein formulated as a linear inverse scattering problem and solved in a regularized way through the truncated singular value decomposition inversion scheme. Specifically, two different imaging schemes based on an incoherent fusion of the tomographic images or a fully coherent data processing are herein developed and compared. Experimental tests carried out in a port scenario for imaging both a stationary and a moving target are reported to validate the imaging approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.