Abstract

Missing data are present in most real world problems and need careful handling to preserve the prediction accuracy and statistical consistency in the downstream analysis. As the gold standard of handling missing data, multiple imputation (MI) methods are proposed to account for the imputation uncertainty and provide proper statistical inference. In this work, we propose Multiple Imputation via Generative Adversarial Network (MI-GAN), a deep learning-based (in specific, a GAN-based) multiple imputation method, that can work under missing at random (MAR) mechanism with theoretical support. MI-GAN leverages recent progress in conditional generative adversarial neural works and shows strong performance matching existing state-of-the-art imputation methods on high-dimensional datasets, in terms of imputation error. In particular, MI-GAN significantly outperforms other imputation methods in the sense of statistical inference and computational speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.