Abstract
Site-occupation embedding theory (SOET) is an in-principle-exact multi-determinantal extension of density-functional theory for model Hamiltonians. Various extensions of recent developments in SOET [Senjean et al., Phys. Rev. B 97, 235105 (2018)] are explored in this work. An important step forward is the generalization of the theory to multiple impurity sites. We also propose a new single-impurity density-functional approximation (DFA) where the density-functional impurity correlation energy of the two-level (2L) Hubbard system is combined with the Bethe ansatz local density approximation (BALDA) to the full correlation energy of the (infinite) Hubbard model. In order to test the new DFAs, the impurity-interacting wavefunction has been computed self-consistently with the density matrix renormalization group method (DMRG). Double occupation and per-site energy expressions have been derived and implemented in the one-dimensional case. A detailed analysis of the results is presented, with a particular focus on the errors induced either by the energy functionals solely or by the self-consistently converged densities. Among all the DFAs (including those previously proposed), the combined 2L-BALDA is the one that performs the best in all correlation and density regimes. Finally, extensions in new directions, like a partition-DFT-type reformulation of SOET, a projection-based SOET approach, or the combination of SOET with Green functions, are briefly discussed as a perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.