Abstract

Abstract In this paper, we study the dynamics of one-dimensional chains composed of elastoplastic beads. Three uniform chains, which were experimentally studied in the existing literature, are taken as benchmark examples for manifesting wave propagation induced by multiple impacts between particles and by multiple-compression process in a single contact point. We perform simulations using an elastoplastic contact model developed recently for the binary contact of a sphere. Numerical results show good agreement with the experimental observations, including the profile and amplitude of the incident and reflected solitary waves, the travel time of the wave propagation, and the high-frequency oscillations residing in the high-amplitude stress wave. Our simulations also show that the multiple-compression process of the contact between particles is responsible for the oscillations residing in the pulse profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call