Abstract
The polarization-induced charges of a dielectric sphere are studied for charged colloidal systems in electrolyte solutions with a primitive model. The method of constructing multiple-image charges is used to approximate the polarization potential of a microion outside the sphere; it is based on a numerical discretization of the potential's analytical integral representation, and can systematically approximate the exact potential with desired accuracy by varyiation of the number of point images. Different aspects of the image effects are then investigated by Monte Carlo simulations for several colloidal systems, in both salt-free and salty environments. Furthermore, we studied the influence of discrete surface charges of different valences, and demonstrate that the polarization charges can significantly strengthen charge reversal for the colloid-microion complex, especially for multivalent interfacial ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.