Abstract

The nanocomposite gel system has been successfully applied as a water shutoff agent to enhance oil recovery (EOR) or for plugging to control lost circulation events. In this study, the silica/polyacrylamide nanocomposite was synthesized via in situ free radical polymerization of acrylamide (AM) monomers in the presence of silica nanoparticles. The composite was cross-linked with polyethylenimine to prepare a high-strength hydrogel. The viscosity test was conducted to determine the gelation time of the gel. Rheological measurements and sand pack breakthrough pressure tests were carried out to measure the gel strength. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and scanning electron microscopy (SEM) tests were adopted to characterize the structure and morphology of the gel. The results show that compared to polyacrylamide (PAM) gel, the gelation time of the nanocomposite gel will decrease with increasing gel elasticity modulus, and the breakthrough pressure of the nanocomposite gel is 29.82 MPa, which increased by 65%. As shown in the ATR-FTIR test, this can be attributed to the presence of multiple hydrogen bonds for the PAM molecule with both silica and quartz sand particles. In the composite gel, hydrogen bonding mainly forms between the O atoms of PAM and the H atom on the surface of silica, enhancing gel strength and elasticity modulus with more cross-linking density and less porosity. Moreover, H bonding between additional -NH2 of PAM and quartz sand particles helps improve gel plugging pressure. However, in the silica and PAM mixture gel, the H bonding of silica occupies -NH2 of PAM, which became unavailable to attach on the sand surface, reducing the breakthrough pressure by 30%, although it can enhance the rheological strength. This study suggests that in situ composite of silica in PAM can not only greatly improve gel rheological strength but also help maintain the strong adhesion of PAM molecules onto quartz sand, resulting in better plugging performance in the sand reservoir.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.