Abstract

Despite its widespread use in signal collection, flexible sensors have been rarely used in human-machine interactions owing to its indistinguishable signal, poor reliability, and poor stability when inflicted with unavoidable scratches and/or mechanical cuts. A highly sensitive and self-healing sensor enabled by multiple hydrogen bonding network and nanostructured conductive network is demonstrated. The nanostructured supramolecular sensor displays extremely fast (ca. 15 s) and repeatable self-healing ability with high healing efficiency (93 % after the third healing process). It can precisely detect tiny human motions, demonstrating highly distinguishable and reliable signals even after cutting-healing and bending over 20 000 cycles. Furthermore, a human-machine interaction system is integrated to develop a facial expression control system and an electronic larynx, aiming to control the robot to assist the patient's daily life and help the mute to realize real-time speaking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.