Abstract

ABSTRACTMalassezia species are important fungal skin commensals and are part of the normal microbiota of humans and other animals. However, under certain circumstances these fungi can also display a pathogenic behavior. For example, Malassezia furfur is a common commensal of human skin and yet is often responsible for skin disorders but also systemic infections. Comparative genomics analysis of M. furfur revealed that some isolates have a hybrid origin, similar to several other recently described hybrid fungal pathogens. Because hybrid species exhibit genomic plasticity that can impact phenotypes, we sought to elucidate the genomic evolution and phenotypic characteristics of M. furfur hybrids in comparison to their parental lineages. To this end, we performed a comparative genomics analysis between hybrid strains and their presumptive parental lineages and assessed phenotypic characteristics. Our results provide evidence that at least two distinct hybridization events occurred between the same parental lineages and that the parental strains may have originally been hybrids themselves. Analysis of the mating-type locus reveals that M. furfur has a pseudobipolar mating system and provides evidence that after sexual liaisons of mating compatible cells, hybridization involved cell-cell fusion leading to a diploid/aneuploid state. This study provides new insights into the evolutionary trajectory of M. furfur and contributes with valuable genomic resources for future pathogenicity studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call