Abstract

Reversible data hiding (RDH) has unique advantage in copyright and integrity protection for multimedia contents. As a typical RDH scheme, histogram shifting technique (HS) has found wide applications due to its high quality of marked image. At present, most existing HS-based RDH schemes rely on single histogram generated from cover image to hide data. Since the single histogram-based approach (SH_RDH) commonly employs smooth regions in the cover image for data hiding, it might not well utilize the cover image and exploit the correlations among image contents of different texture characteristics. In this paper, a novel RDH general framework using multiple histograms modification (MH_RDH) is proposed, which involves two key issues as follows: 1) the construction of multiple histograms based on optimized multi-features and 2) the rate allocation among multiple histograms is formulated as the one of rate-distortion optimization and solved with evolutionary algorithms. The experimental results show that the proposed method could considerably increase the payload of current MH_RDH-based embedding (ranging from 0.2 to 0.7 bpp for most test images) and outperform the other state-of-the-art SH_RDH and MH_RDH schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call