Abstract

AbstractSupramolecular systems consisting of covalent organic frameworks (COFs) and Ni complex are designed for robust photocatalytic reduction of CO2. Multiple heteroatom‐hydrogen bonding between the COF and Ni complex is identified to play a decisive role in the photoexcited electron transfer across the liquid‐solid interface. The diminution of steric groups on COF or metal complex can optimize catalytic performance, which is more attributable to the enhanced hydrogen‐bond interaction rather than their intrinsic activity. The photosystem with relatively strong strength of hydrogen bonds exhibits remarkable photocatalytic CO2‐to‐CO conversion, far superior to photosystems with supported atomic Ni or metal complex alone in the absence of hydrogen‐bond effect. Such heteroatom‐hydrogen bonds bridging electron transport pathway confers supramolecular system with high photocatalytic performance, providing an avenue to rationally design efficient and steadily available photosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.