Abstract
Variable frequency asymmetrical pulsewidth modulation (VFAPWM) is widely used in wireless power transfer (WPT) systems to control the amount of power transferred. This control scheme is also adopted in Qi, one of the world's most well-known wireless charging standards. Conventionally, the analysis of WPT systems is based on first harmonic approximation, which only considers the fundamental harmonic signals. This could be inaccurate for variable frequency asymmetrical pulsewidth-modulated WPT systems because VFAPWM inherently produces multiple harmonics. In this paper, a new analytical technique, called multiple harmonics analysis (MHA), is developed to analyze series–series-compensated WPT systems. The MHA technique is a comprehensive design foundation and provides a set of closed-form solutions to predict quantities, such as zero-voltage switching (ZVS) and voltage gain. New phenomena in ZVS and voltage gain are discovered. The accuracy of MHA is also confirmed by both simulation and experimental measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.