Abstract
This paper is mainly a review of the multi-Hamiltonian nature of Toda and generalized Toda lattices corresponding to the classical simple Lie groups but it includes also some new results. The areas investigated include master symmetries, recursion operators, higher Poisson brackets, invariants and group symmetries for the systems. In addition to the positive hierarchy we also consider the negative hierarchy which is crucial in establishing the bi-Hamiltonian structure for each particular simple Lie group. Finally, we include some results on point and Noether symmetries and an interesting connection with the exponents of simple Lie groups. The case of exceptional simple Lie groups is still an open problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.