Abstract

Hexakis(n-alkyloxy)triphenylene) (HATn) consisting of an aromatic triphenylene core and alkyl side chains are model discotic liquid crystal (DLC) systems forming a columnar mesophase. In the mesophase, the molecules of HATn self-assemble in columns, which has one-dimensional high charge carrier mobility along the columns. Here, a homologous series of HATn with different length of the alkyl chain (n = 5,6,8,10,12) is investigated using differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques including fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). The investigation of the phase behavior was done utilizing DSC experiments and the influence of the alkyl chain length on the phase behavior was revealed. By the dielectric investigations probing the molecular mobility, a γ-relaxation due to localized fluctuations as well as two glassy dynamics, the αcore- and αalkyl-relaxation, were observed in the temperature range of the plastic crystalline phase. Moreover, the observed glassy dynamics were further studied employing advanced calorimetry. All observed relaxation processes are attributed to the possible specific molecular fluctuations and discussed in detail. From the results a transition at around n = 8 from a rigid constrained (n = 5,6) to a softer system (n = 10,12) was revealed with increasing alkyl chain length. A counterbalance of two competing effects of a polyethylene-like behavior of the alkyl chains in the intercolumnar domains and self-organized confinement is discussed in the context of a hindered glass transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.