Abstract

A recently proposed method to obtain free energy differences for multiple end states from a single simulation of a reference state which was called enveloping distribution sampling (EDS) [J. Chem. Phys. 126, 184110 (2007)] is expanded to situations where the end state configuration space densities do not show overlap. It uses a reference state Hamiltonian suggested by Han in 1992 [Phys. Lett. A 165, 28 (1992)] in a molecular dynamics implementation. The method allows us to calculate multiple free energy differences "on the fly" from a single molecular dynamics simulation. The influence of the parameters on the accuracy and precision of the obtained free energy differences is investigated. A connection is established between the presented method and the Bennett acceptance ratio method. The method is applied to four two-state test systems (dipole inversion, van der Waals perturbation, charge inversion, and water to methanol conversion) and two multiple-state test systems [dipole inversion with five charging states and five (dis-)appearing water molecules]. Accurate results could be obtained for all test applications if the parameters of the reference state Hamiltonian were optimized according to a given algorithm. The deviations from the exact result or from an independent calculation were at most 0.6 kJ/mol. An accurate estimation of the free energy difference is always possible, independent of how different the end states are. However, the convergence times of the free energy differences are longer in cases where the end state configuration space densities do not show overlap [charge inversion, water to methanol conversion, (dis-)appearing water molecules] than in cases where the configuration space densities do show some overlap [(multiple) dipole inversion and van der Waals perturbation].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.