Abstract

For the multiple Fourier series of the periodization of some radial functions on Rd, we investigate the behavior of the spherical partial sum. We show the Gibbs-Wilbraham phenomenon, the Pinsky phenomenon and the third phenomenon for the multiple Fourier series, involving the convergence properties of them. The third phenomenon is closely related to the lattice point problems, which is a classical theme of the analytic number theory. We also prove that, for the case of two or three dimensions, the convergence problem on the Fourier series is equivalent to the lattice point problems in a sense. In particular, the convergence problem at the origin in two dimensions is equivalent to Hardy's conjecture on Gauss's circle problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.